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Natural supramolecular carbohydrate scaffold-catalyzed synthesis of tetrahydroquinoline derivatives by
the reaction of aromatic amine and cyclic enol ether in excellent yield with high diastereoselectivity has
been developed. Carbohydrates, cellulose, and starch were converted into their sulfonic acid derivative
and these scaffolds exhibit efficient catalytic properties, along with excellent cost effectivity and
recyclability.

� 2009 Elsevier Ltd. All rights reserved.
Recently due to environmental and social pressure on industry,
there has been a strong shift towards green technology.1 Chemists
have to dedicate numerous efforts to the development of clean
technologies either by replacing a conventional solvent with an
ecofriendly solvent or by developing a new ecofriendly catalyst.2

The major challenge in this area is the development of lucrative,
highly active, and stable solid acid catalyst as a substitute of homo-
geneous catalysts, such as HF, AlCl3, and H2SO4. Even though these
homogeneous catalysts are very successful, they produce highly
corrosive media with chemically reactive waste streams. Indeed,
the solid catalysts have many advantages; they are noncorrosive
and environmentally benign, presenting fewer disposal problems.
Their reuse is possible and their separation from liquid products
is much easier. Furthermore, they can be designed to give higher
activity, selectivity, and longer catalytic life. In this regard natural
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Figure 1. Bioactive tricycli
biopolymers are attractive candidates as new solid support
catalysts.3,4

As a part of our continual efforts toward the development of
environmentally benign synthetic procedures for multicomponent
reactions,5 we have initiated exploration of ecofriendly natural
supramolecular carbohydrates as catalyst for the synthesis of bio-
active tricylic tetrahydroquinoline scaffolds.

The tricylic tetrahydroquinoline moieties are widely distributed
in nature and reveal a broad range of biological activities. Tricylic
tetrahydroquinoline moieties are found in many alkaloids (Fig. 1)
such as flindersine, oricine, veprisine, and skimmianine.6,7 These
alkaloids possess important biological activities such as antialler-
gic,8 psychotropic,9 anti-inflammatory,10 and estrogenic.11

A plethora of procedures for the formation of tetrahydroquino-
line is precedented in the literature, catalyzed by Lewis acid,12–17
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metal triflates,18–20 and protonic acids, such as HCl and trifluoro-
acetic acid. Also Chao-Jun Li et al. have reported that indium(III)
chloride catalyzed pyranoquinoline in water.21 The aza-Diels–
Alder reaction catalyzed by Lewis acid is the most explored meth-
od for the synthesis of pyrano-/furano-quinoline derivatives. All
these methodologies involve costly and hazardous catalyst as well
as cumbersome work-up procedure.

We wish to report here an efficient synthesis of tricyclic tetra-
hydroquinoline using natural supramolecular carbohydrates as
catalyst via cycloaddition of aromatic amine and cyclic enol ether.
Carbohydrates are considered as the most abundant molecules of
the biomass and we have selected two most generous supramolec-
ular carbohydrates: cellulose and starch molecules, for catalytic
activity, because these are very cost-effective, biodegradable, and
are obtained from renewable resources. In order to achieve effec-
tive catalytic properties, cellulose and starch were converted to
their sulfonic acid derivatives (Fig. 2).

We herein describe the diastereoselective synthesis of tricyclic
tetrahydroquinoline by cellulose sulfuric acid (CellSA) or starch
sulfuric acid (StarSA) as catalyst from aromatic amine and cyclic
enol ether.

The reaction of aromatic amine with 2 equiv of cyclic enol ether
in the presence of CellSA or StarSA in acetonitrile at room temper-
ature furnished the corresponding pyranoquinoline and furano-
quinoline in good to excellent yields. The cis and trans isomers
are formed in almost all the cases. However cis-isomer is preferen-
tially formed with a high diastereoselectivity. Furanoquinolines
showed a better diastereoselectivity than pyranoquinolines22

(Scheme 1). This reaction is categorized as ABB0 type multicompo-
nent reaction because cyclic enol ether (B) component is chemodif-
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ferentially incorporated in two distinct manners (B and B0).23 The
cyclic enol ether serves a dual role: as an aldehyde and as a cyclic
enol ether.

CellSA or StarSA can be easily prepared by the reaction of
an inexpensive cellulose or starch with chlorosulfonic acid24

(Scheme 2).
This white homogeneous solid acid is very stable and is not af-

fected by air, water, or light. Sulfur content of the samples by con-
ventional elemental analysis was 0.55 and 0.12 mmol/g for
cellulose sulfuric acid and starch sulfuric acid, respectively. The
number of H+ sites of cellulose–SO3H and starch–SO3H determined
by acid–base titration was 0.50 and 0.10 mequiv/g, respectively.
This value corresponds to about 90% and 83% of the sulfur content,
indicating that most of the sulfur species on both the samples are
in the form of the sulfonic acid group.

The cellulose–SO3H catalyst has an excellent catalytic property
which is attributed to the high hydrothermal stability and strong
acid sites of sulfo functional groups. Due to low solubility and high
stability, cellulose is more suitable as a support relative to starch.

We explored the 1:2 coupling of substituted anilines with elec-
tron-rich alkene under different conditions and found that cellu-
lose sulfuric acid (cellSA) was the most efficient catalyst for
tetrahydroquinoline synthesis in CH3CN at room temperature.
lar carbohydrate catalyst.
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Table 1
Reaction optimization with catalyst and solvent
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In the reaction of aniline (5 mmol) with pyran (10 mmol) in the
presence of 0.01 g of cellulose sulfuric acid in CH3CN, only a trace
amount of desired product is formed in 24 h. To optimize the reac-
tion conditions, we carried out the reaction with 0.02, 0.03, 0.04,
and 0.05 g of CellSA and StarSA. The best results were obtained
with CellSA (0.03 g) in terms of yields and reaction time (Fig. 3).

One of the advantages of solid acid catalysts is their recyclabil-
ity. We were able to separate cellulose or starch sulfuric acid from
the reaction medium smoothly by washing with CH2Cl2. After dry-
ing, it was reused for successive reactions (at least 3–4 runs). Thus,
this process could also be interesting for large-scale synthesis. Cell-
SA was found to be more efficient in recyclability than StarSA
(Fig. 4).
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Figure 5. The proposed reaction mechanism for
We also carried out the reaction without any catalyst, where
cellulose and starch with aniline and 3,4-dihydro-2H-pyran were
reacted at room temperature in CH3CN for two days but no reac-
tion was observed. In order to see the solvent effect on this reac-
tion, we have performed the reaction in acetonitrile, DMF, and
THF. Acetonitrile was found to be the best solvent with respect
to yields, reaction time, and selectivity. Reaction of aniline with
3,4-dihydro-2H-pyran in acetonitrile in the presence of cellulose
sulfuric acid (0.03 g) gave pyranoquinolines in good yield (89%)
Catalyst g Solvent Time (h) Yielda cis/transb

None — CH3CN 48 Trace —
Cellulose 0.03 CH3CN 48 Trace —
Starch 0.03 CH3CN 48 Trace —
StarSA 0.03 CH3CN 4 75 —
StarSA 0.04 CH3CN 5 80 —
StarSA 0.05 CH3CN 4.5 77 —
CellSA 0.01 CH3CN 24 Trace —
CellSA 0.02 CH3CN 8 20 —
CellSA 0.03 CH3CN 8 89 85:15
CellSA 0.03 THF 8 58 68:32
CellSA 0.03 DMF 8 50 60:40
CellSA 0.04 CH3CN 4 78 85:15
CellSA 0.05 CH3CN 4 70 85:15

a (%) Isolated yield.
b Cis/trans ratio was determined by 1H NMR.

Table 2
Cellulose sulfuric acid-catalyzed pyranoquinoline and furanoquinoline

Entry R n Reaction time (h) Yielda (%) cis/transb

a H 2 4.0 89 85:15
b p-OCH3 2 4.5 74 79:21
c o-OCH3 2 4.0 85 82:18
d p-CH3 2 5.5 83 80:20
e p-F 2 6.0 72 75:25
f p-Cl 2 5.0 65 78:22
g p-Br 2 6.5 79 89:13
h m-NO2 2 5.5 60 67:33
i H 1 4.5 78 89:11
j p-Cl 1 6.0 95 82:18
k p-CH3 1 4.5 90 90:10
l p-OCH3 1 4.0 89 87:13
m p-Br 1 4.4 90 91:09

Reaction conditions: 5 mmol (aromatic amine) 10 mmol (cyclic enol ether).
a Isolated yield.
b cis/trans ratio determined by 1H NMR.
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with high cis selectivity (Table 1). Compound 3a (cis product) was
obtained as a major product, whereas 4a (trans product) was ob-
tained as a minor product. The optimized conditions of pyrano-
quinolines were applied for the synthesis of furanoquinolines.
The selectivity and yield of furanoquinolines were better than
those of the corresponding pyranoquinolines.

Using these optimized reaction conditions, the efficiency of the
catalyst was studied for the synthesis of a wide variety of aromatic
amines, and the results are summarized in25 Table 2. The substitu-
ent on aniline has a marked effect on the reaction. Aniline with an
electron-donating group favors the reaction more than with an
electron-withdrawing group.

A proposed mechanism for the formation of furanoquinolines is
given in Figure 5.

In summary, cellulose sulfuric acid, a recyclable and easily han-
dled solid-supported acid catalyst, has been demonstrated as a
new reagent for the synthesis of tricyclic tetrahydroquinoline. This
novel methodology allows for the first time the preparation of tri-
cyclic tetrahydroquinoline, a transformation that only proceeded
previously with extremely poor yields and diastereoselectivity.
The synthetic efficacy of this protocol has been further extended.
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